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Abstract 

Dynamics of ideal fluid with free surface can be effectively solved by 
perturbing the Hamiltonian in weak nonlineaiity limit. However it is 
shown that perturbation theory, which includes third and fourth order 
terms in the Hamiltonian, results in the ill-posed equations becaiise of 
short wave instability. To fix that problem we introduce the canonical 
Hamiltonian transform from original physical variables to new variables 
for which instabiHty is absent. We found the choice of such transform is 
unique. 

1    Introduction 

The Euler equations describing dynamics of ideal fluid with free surface is a 
Hamiltonian system, which is especially simple if the fluid motion is potential, 
V = V#, where v is the fluid's velocity and * is the velocity potential. In this 
case [1, 2] the Euler equations can be presented in the form: 

dt      69'     dt ~    ST}' (^) 

Here z = T){T) is the shape of surface, z is vertical coordinate and r = {x,y) are 
horizontal coordinates, * = ^\      is the velocity potential on the surface. The 
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Hamiltonian H coincides with the total (potential and kinetic) energy of fluid. 
The Hamiltonian cannot be expressed in a closed form as a function of surface 
variables r}, *, but it can be presented by the infinite series in powers of surface 
steepness |VJ7|: 

H = Ho + Hi+H2 + .... (2) 

Here FQ, HI, HI are quadratic, cubic and quartic terms, respectively. Equa- 
tions (1), (2) are widely used used now for numerical simulation of the fluid 
dynamics [7, 8, 9, 10, 12, 13, 14, 15]. These simulations are performing by the 
use of the spectral code, at the moment a typical grid is 512 x 512 harmonics. 

Canonical variables are used also for analytical study of the surface dynamics 
m the limit of small steepness. It was show [4, 5, 6] that the simplest truncation 
of the series (2), namely 

H = Ho + Hr, (3) 

leads to completely integrable model - complex Hopf equation. In framework of 
this approach one can develop the self-consistent theory of singularity formation 
in absence of gravity and capiUarity for two dimensions (one vertical coordinate 
z and one horizontal coordinate x). 

However, canonical variables 77, * has a weak point, which becomes clear, if 
we concentrate our attention on the complex Hopf equation, 

dQ_    l/50\2 
dt ~   2\di) ' (^) 

which comes from Eqs. (1), (3). Here 

* = Re(Q) (5) 

and 0 is analytic function of complex variable a; m a strip -h < Im{x) < 0. 
The weak point is that Eq. (4) is ill-posed. A general complex solution of this 
equation is unstable with respect to grow of small short-wave perturbations. The 
same statement is correct with respect to more exact fourth order Hamiltonian 

H = Ho+Hi+H2, (6) 

which is used in most numerical experiments. These experiments are easy be- 
cornes unstable: to arrest mstability one should include into equations strong 
artificial damping at high wave numbers. Even m presence of such damping 
one can simulate only waves of a relatively small steepness (not more that 
0.15)[reference??????????]. 

In this Article we show that these difficulties can be fixed by a proper canon- 
ical transformation to another canonical variables. It is remarkable, but the 
property of nonUnear wave equation to be well- or iU-posed is not invariant with 
respect to choice of the variables. 

In the present Article we demonstrate that there are unique canonical vari- 
ables such that the Eqs. (1), (6) are weU-posed. We call these variables "optimal 
canonical variables". We can formulate a conjecture that the optimal canonical 
variables exist and are unique in all orders of nonlinearity 



2    Basic equations and Hamiltonian formalizm 
Consider the dynamics incompressible ideal fluid with free surface and constant 
depth. Fluid occupies the region 

-h<z<ri(T),    T = {x,y), (7) 

where {x, y) are the horizontal coordinates and z is vertical coordinate. 
Viscosity is assumed to be absent and the fluid's velocity v is potential one: 

V = V$, (8) 

where $ is the velocity potential. Incompressibility condition, 

V • V = 0, (9) 

results in the Laplace Eq. 
A$ = 0. (10) 

The potential $ satisfies also the Bernoulli equation: 

*i + ^(V#)%p + ffz = 0, (11) 

where p is the pressure, g is the acceleration of gravity, and we set density of 
fluid to unity. 

There are two types of boundary conditions at free surface for Eqs. (10), (11). 
First is the kinematic boundary condition 

dn 
m = ($,-Vr?-V$)|       =w„Vl + (V7,)2, (12) 

\ / 12=7) 

where u„ = n • V$ is the normal component of fluid's velocity at free surface, 
and n = (—VJJ, 1) [l + (Vij)^] "is the interface normal vector. 

Second is the dynamic boimdary condition at free surface 

where a is the smrface tension coefficient which determines the jump of pressure 
at free surface from zero value out of the fluid to p| _ value according to Eq. 
(13). 

Boundary condition at the bottom is 

*z|.=-h- (14) 

Eqs. (10) - (14) form a closed set of equations to determine the dynamics 
of free surface. 



The total energy, H, of the fluid consists of kinetic energy, T, and potential 
energy, U: 

H = T + U, (15) 

T = \jdTJ\v<ifdz, (16) 

U=\glri'dT + cj[yJ\ + {Vnf-']dT. (17) 

It is a convenient to introduce the value of velocity potential at interface 
with the boundary conditions 

$|^^^ = $(r,t). (18) 

It was shown in Ref. [2] that free surface problem (10) - (14) can be written in 
the Hamiltonian form (1), with the Hamiltonian H defined in (15). 

Fourier transform, 

*k = ^jexp{-ik ■ r)*(r)dr, (19) 

is the canonical transform which conserves the Hamiltonian structure and Eqs. 
(1) take the following form: 

3    Weak nonlinearity 

If typical slope of free surface is small, |V7/| < 1, the Hamiltonian H is can be 
series expanded (see Eq. (2)) in powers of stepness |V7;| which gives [2, 3]: 

i/o = ^y'{^*|*kP + Bt|»?kp}dk, 

Ak = jfctanh(fc/i), Bk=9 + ak'^, k = |k|, (21) 

Hi = ^j 4?.k. *k, *k.'7k3<5(ki + k2 + k3)dkidk2dk3        (22) 

"' = 2(^/ K.k.k3,k.*k.*k. - J(kl •k2)(k3 -k4)%,%,] 
x»7k3'^4<5(ki + k2 + ka + ki)dkidk2dk3dki,        (23) 

where matrix elements are given by 

J^k?,k5 =-ki-k2-^i>i2, 

4?,k„k3,k4 = 4^1 ^2 (^1+3 + ^2+3 + ^1+4 + A2+i) 

-l{klA2 + kiAi),    Aj=Akr (24) 



The corresponding dynamical equations follow from (1), (6), (21), (22), (23): 

^ = -ff„ + crAT, + i [{A^f - (V*)'] - (i$)i[»?(i*)] 

-(A*)(i*)7? - |V • [V7j(V7? • VT/)] , (25) 

^ = i* - V • [(V*)7j] - i[7?i*] + i{»ji[7?i*] } 

+iA[7,M*] + |i[7j^A*], (26) 

where ^ is the linear integral operator which corresponds to multiplication on 
fetanh(fc/i) in Fourier space. For two dimensional flow, *(a;,2/) = *(a;), ri{x,y) = 
T}{x), this operator is given by 

A = -^R (27) 
ox 

1        r'*'°° fix) 
^^(-) = 2^^-^-Lsinh[(/-i/(2/.)]'^' (28) 

where P.V. means Cauchy principal value of integral. In the limiting case of 
infinitely deep water, ft -> oo, operator A tmrns into operator fe 

lim i = Jb (29) 
h-+oo 

which corresponds to multiplication on |k| in Fourier space while operator 
R for two-dimentsional flow turns into the Hilbert transform: 

lim 
fc-K» 

R = H,    Hf{x) = -P.V.r°°^dx'. (30) 
IT y_oo    X'-X 

H can be also interpreted as a Fourier transform of -isign(fc). 
K one neglects gravity and siurface tension, g = 0,a = 0, than Eqs. (1), (2) 

at leading order over small parameter |VJJ| result in[5, 4, 6] 

g=i*, (31) 

Remarkable feature of Eqs. (31), (32) is that the second Eq. (32) does 
not depend on TJ thus one can flrst solve (32) and then flnd ri from Eq. (31). 
Substitution 0 = * +1^* into Eq. (32) results in the complex Hopf Eq. (4) 
for two-dimensional flow [6] which is completely integrable. 

Both Eqs. (32) and (4) are ill-posed because they have short wavelength 
instability which determines as follows. E.g. we can analyze Eq. (32). Take * 
in the form 

* = *o + (*ie*'^'+''* + c.c^, (33) 



where $o(r,t) is a solution of Eq. (32), *i is the amplitude of small pertur- 
bation, and c.c. means complex conjugation. Then in the limit |ko| ->^ oo $o 
evolve very slow in space compare to g*"'"^"* and we get the dispersion relation 
for small perturbations: 

V = Ak^A^o - iko ■ V*o (34) 

which describes instability for Re{v) = Aki^A^o > 0. For general initial condi- 
tion such instability region always exists. Instability growth rate, Re{u) grows 
as |ko| increases. 

4    lU-posedness of the fourth-order Hamiltonian 

Consider now a more general case of nonzero g and a and talce into account all 
terms in the Hamiltonian up to forth order, i.e. consider full Eqs. (25). Similar 
to previous section we linearize Eqs. (25) using ansatz 

»? = »?o + (»?ie*'''+'" + c.c.), 

$ = *o + (*ie*'^'+'^ + c.c^, (35) 

were r;o(r,t), *o(>',*) are solutions of (25), and get for |ko| -¥ oo : 

^ = f + ^ (/^' + 2[>1*„ + « - fc')(-i + AkoVo)m] 

X [ - 2(/-f-{3(VJ7O)^ - 2}fcV])'^^ 

fi = -iko ■ V*o + [Ako + (fco - ^fco)^o]^*o. (36) 

Instability growth rate take more compact form for infinite depth fluid as 
lim/i_>oo Ak=k: 

/i = -zko-V*o + fcofcto- (37) 

For general initial condition with arbitrary depth h the instability region 
Re{u) = AkgA^o > 0 always exists. We conclude that full fourth order Hamil- 
tonian does not prevent short wavelength instability and Eqs. (25) are ill-posed. 

ni-posedness of Eqs. (20), (21) - (23) (or, equivalently, Eqs. (25)) makes 
them difficult for numerical analysis. There a few ways to cope with that prob- 
lem. One way is to introduce artificial damping for short wavelengths, i.e. to 
replace Eqs. (20) by 

dm,       5H ,,, a*k SH ,,,, 



where functions 71 (A;), 72(fc) are zero for small and intermediate values of k but 
they tend to -00 for A; -^ 00. Second way is to introduce finite viscosity of 
the fluid. However in that case the Hamiltonian does not conserve and we can 
not use the Hamiltonian formalism. In this Paper we use third way which is to 
introduce new canonical transform of variables r], * to remove short wavelength 
instability. Advantage of this methods is that, in contrast to first way, we do not 
introduce any artificial damping, and, in contrast to second way, we preserve 
the Hamiltonian formulation of free surface djoiamics problem. 

5    Canonical transform 

Canonical transform from variables *, r/ to new variables R, ^ is determined by 
the generating function S : 

S = J RkV-kdk + g^ / ^3%i»?k3fik3<5(ki + ka + k3)dkidk2dk3 

+4(2;r)2 J ^ki,k2,k3,k4i?k,»7k2'?k3J»c4*(ki + k2 + ka + k4)dkidk2dk3dki, (39) 

*" " ^ = ^'^ + 4^ y ^l^k,»?k,<J(ki + k2 - k)dkidk2 

+4(2;r)2 / ^''i,ka,k3,-k-Rki»?kaiyk3<5(ki + k2 + ks - k)dkidk2dk3,        (40) 

A*? 1     t 

^k = g^-^ ~^'^8^J ^kTlWiVkJOs-i + k2 - k)dkidk2 

+ 4(2^ J ^-k,k2,ks,k4»?k2%3T^^J(k2 + kj + k4 - k)dk2dk3cflc4,        (41) 

where T^ki,k2,k3,k4 is the symmetric function of k2,k3,k4. This is the most gen- 
eral form of canonical transform up to terms of fourth order. The only condition 
which we use here is that S is chosen to be linear functional R to preserve the 
quadratic dependence of the Hamiltonian on canonical momentum R. 

T] can be found from Eq. (41) as the functional of ^ by iterations (here 
and below we take into account only corrections up to the fourth order in the 
Hamiltonian): 

Vk=^k-—J ^*Cki6c2*(ki + ka - k)dkidk2 + -7^ 

X J [AkAi+2 - 2K.k,ki,k2,k,]^kifk2&3<J(ki + k2 + kg - k)dkicflc2dk3,   (42) 

Eqs. (40), (42) give: 

*k = i?k + ^ J AiRi,,^U2S(ki + k2 - k)dkidk2 + 
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g^i— J [ - A1A2+3 + 6Fk„k2,k3,-k]iik,Ck2^k3 

X(5(ki + k2 + ka - k)dkidk2dk3, (43) 

Using Eqs. (21), (22), (23), (40), (42) we get: 

Ho = \j {A*|J?kP + Bfci^kp}dk,      (44) 

Fi = i /" [ - (ki • k2)i?kii?k, - liAiBi + A2B2 + AsBs)^^,^^,] 

xCk3^(ki + k2 + k3)dkidk2dk3,      (45) 

H2 = —p / {(ki • k2)(Ai+2 -Ai- A2) - kJA2 - klAi 

+ -J4IJ42[AI+3 + A2+3 + Ai+4 + A2+4] + 3[i4iFkj,k3,k4,ki 

+A2Vk„k3,k.,k.]}i«kiiik»ek3ek/(kl + k2 + k3 + k4)dkidk2dk3dk4 

+ g^ / { " ''^^' ■ ^^^'^^^ ' ^^ + i^l+2-^1+2 + ^^3^1+2 

-2Bl Vkl ,k2,k3,k4 l^kl Ck2^k3Ck4 

xS{ki + k2 + k3 + k4)dkidk2dk3dk4,      (46) 

Canonical transform conserves the Hamiltonian structure so the dynamical 
equations in new variables R, ( are given by: 

dt~ SR'     dt 5£.' 

6    From complex to real Hopf equation 

We chose the cubic term of the generation function 5 in such a way to remove 
linear instability at leading order. Similar to Eqs. (31), (32), we get from Eqs. 
(44), (45), (47) at leading order of small parameter |V^| : 

%=AR, (48) 

'-§ = -\{VRf. (49) 

Thus instead of the complex Hopf Eq. (4) (or Eq. (32)) we got real Burgers Eq. 
(49) for new canonical variable R. It is important that the real Burgers Eq. is 
well-posed. 

Additional advantage of (49) is that it can be integrated by the the method 
of characteristic not only in two dimensions as Eq. (4) but for three dimensional 
flow also. 



7    Removal of instability from fourth order term 
Next step is to remove instabUity from the fourth order terms in the Hamiltonian 
(46) by proper choice of matrix element V. We can take V^^^h^MM in the 
following form: 

Vki,k„k3,k4 = ocikl + a2AiiA2+3 + A2+4 + ^3+4), (50) 

where a^, aa are the real constants. , , „, 
The dynamical equations, as foUows from (44), (45), (46), (47), (50) axe 

-kvR ■ VAE - ^(1 - 3a,)i{AR)AR - {\ + 802) {AR)A{UR) 

.^^A[{ARf] - |v • [ve(ve ■ V6] - lUHBf) 

-i{m)Ae - \As{iAe) - ^a(eiBe) - \a.e^Bi 

+\a2{Am)Ae - ^^Be + ^-fABiae),       (51) 

I = ii? - V - [{VR)(] + iv • [{S^R)Ae] - iv ■ AieVR) 

' -Iv • ieAVR) + '-^AieAR) + "-^AieAR) 

+ {\+3a2)A[a{^AR)] + la2A[{Ae){AR)],       (52) 

where B = g-crA. 
Using ansatz 

^ = eo+(6e*»'-'''*+c.c.), 

R = Ro + (i?ie*°'+''* + c.c^, (53) 

one can linearize Eqs. (51), (51) on a bax:kground of solution eo(r, t), Rc{r,t) a, 
and get for |ko| -»^ 00 : 

tiy = -iko • VJlo + 2^fco^oko • Vi?o 

-i[2(3ai - \)kl + (1 + 12a2)4o]&^^o, 

/i2 = iko • VRo + ^^fco^oko • Vi?o 

+l[2(3ai - l)kl + (1 + 36a2)4o]^oii?o, 



fi3 = ^{2(5*0 [4^*0^0 - 4 + 3<(4a2 - 1)^0' + ^aik^o^^] 

+6fcoV(Vfo)') +^*o(6«2 - l)Bk„A^^}{4kUo 

+(1 + 12a2)Al^^ + (4 + 6a,kU^)Ako + (64„a2 - &o')i^o'}- (55) 

To avoid instability it is necessary to have purely imaginsiry u. Necessary con- 
dition for that is that the expression under square root, pf + /*3) in Eq. (54) 
should have zero imagmary part. It follows form Eqs. (54) that ps is always 
real, and fi^ is real provided 

2(3ai - l)k^ + (1 + 36a2)4„ = 0- (56) 

Second condition to have purely imaginary v is Re(iii) = 0, which gives the 
second condition 

2(3ai - l)kl + (1 + 12a2)4„ = 0. (57) 

It follows from Eqs. (56), (57) that in the lunit fco -> 00 (remember that Ak^ -^ 
ko in that limit) the system (44), (45), (46), (47), (50) is well-posed provided 

ai = 1/6,    02 = 0, (58) 

which gives from (46), (50) the weU-posed fourth-order Hamiltonian: 

+ -A1A2 [Al+3 + A2+3 + Ai+4 + A2+4] } 

X-Rki/ik2Cks^k4^(ki + k2 + ks -f k4)dkidk2dk3dk4 

"^8(2^ / { ~ '^^^^ ' ^^^^^^ ' ^^ "^ 4^wBi+2 + ^353^1+2 

-3-Bi*i}&iCk2?k8^k..<5(ki -t- ka 4-ks -I- k4)dkadk2dk3dk4, (59) 

This Hamiltonian is well-posed for any g, a (including case g = a = 0). 
To find dynamics of free surface, one can solve Eqs. for R, ^ using Eqs. 

(47), (44), (45), (59). This is the main result of this Article. To recover physical 
variables *, jj from given R, ( one can use Eqs. (42), (43), (50), (58). 

As follows from Eq. (58), new canonical variables ^, R are uniquely deter- 
mined from the condition of well-posedness of dynamical Eqs. in new variables 
up to the fourth order in the Hamiltonian. We refer to these variables as optimal 
canonical variables. For some extent similar results were obtained by Dyachenko 
and Shamin [18] for particular case of two-dimensional flow. We conjecture that 
the optimal canonical variables exist and are unique in all orders of nonhneaxity. 

8    Special cases 

There are a number of important special cases of optimal canonical variables. 
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8.1    Deep water limit 
For /i -> 00 Eqs. (44), (45), (59) take the form 

^0 = 11 {fc|i?kP + Sfc|^kp}cflc,     (60) 

^1 = ^ y [ - (ki • k2)Rk,Rk, - i(fciBi + k2B2 + fcs-Bs)^!^.] 

x^ks*(ki + k2 + k3)dkidk2dk3,    (61) 

^' = 8(^0^ / {(''^ ■ ^'^^1''^ + k2| - fei - fc2) - likfk2 + fcffci) 

+ Jfclfc2[|kl +k3| + |k2+k3| + |ki +k4| + |k2+k4|]} 
xi?kii?k2Ck36c*(ki + k2 + k3 + k4)dkidk2<ik3dk4 

+ g72^ / { " '^('''- ■ ^^^^"^^ ' ^^^ + il'^i + k2pBi+2 + fcsBsIki + k2| 

--Bifc?}Ckiek2^k3lk4*(ki + ka + ks + k4)dkidk2dk3dk4.    (62) 

8.1.1 Zero gravity and capillarity g = a = 0 

Ho = ljk\Ri,fdk,        (63) 

■ffi = -;^ /(ki • k2)i?kii?k2^k3*(ki + k2 + k3)dkidk2dk3, (64) 

H2 = g^ I {(ki • k2)(|ki + k2| - fei - fc2) - likfh + klh) 

+^fcife2[|ki +k3| + |k2 +k3| + |ki 4-k4| + |k2 + k4|]} 

xi?kii?k3^k3?k4^(ki + ka 4- k3 + k4)dkidk2dk3dk4. (65) 

8.1.2 Zero gravity, g = 0, and nonzero capillarity aj^O 

Ho = ^y {fc|iZkP + ^fe'|&p}dk, (66) 

^1 = ^ / [ - (ki • k2)i?k.iZk. - J(fc? + fcf + fc|)ek.ek,] 

x^k3*(ki + k2 + k3)dki(flc2dk3, (67) 

^' " 8(^ / {^^'' ^''^^^^' +'''' - fci - fea) - ^(fc?fe2 + fcffci) 

+-fcifc2[|ki +k3| + |k2 +k3| + |ki +k4| + |k2 +k4|]} 

X jRk.i?k2?k3?k4'5(ki + k2 + k3 + k4)dkidk2dk3cfk4 
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-3*^1 }fk.^k3?k3^k4<5(ki + k2 + ks + k4)dkidk2dk3dk4.        (68) 

8.1.3    Nonzero gravity, g=^0, and zero capillarity a = 0 

Ho = ll{k\Ruf+g\^i,\^}dk,    Bk=g + cTk\ (69) 

^1 = 4^ / [ - (1*1 • k2)/?kxi?k. - i(fci5 + fcaff + A:3p)a,.ek.] 

x^k3«J(ki + ka + k3)dkidk2dk3, (70) 

^' " 8(^ / {^''' ■ *'')(l''^ + k2| - fci - fe) - ^(fc?fe + fcfjfci) 

+ Jfclfc2[|ki +k3| + |k2 +k3| + |ki +k4| + |k2 +k4|]} 

xi?k,/2k^fk3^k^<J(ki +k2 +k3 +k4)dkidk2dk3dk4 

^8(2^/{ "''^^^ ■''='^(''3 ■'^^ + il'^i +I*2p5 + M^:i +k2| 

-gPfcij^ki^ka&s^k^^JCki + ka + k3 + k4)dkidk2dk3dk4.        (71) 

8.2    Shallow water limit 

Shallow water limit corresponds to kh -^ 0.  In that limit Ak ->■ k^h.   Eqs. 
(44), (45), (59) take the form 

Ho = ^|{A:'/i|i2kP +B,|ap}dk,       (72) 

"' = hJ[~^^'-'^2)^k,i?k. - |(fc?Bx + A|B2 + fc|J53)ek.ek.] 

xa3<5(ki + k2 + k3)<ikicfl£2dk3,        (73) 

"' = 8(^ / {^^^^ ■ ^^">'' - ^(^1^2 + fci^i) 

+ ^fc?fc| [|ki + k3p + |k2 + k3p + |ki + k4p + |k2 + k4p] } 

X-Rki-Rk2&3fk4*(ki + k2 + k3 + k4)<fl£id[k2dk3eJk4 

^8(2^02 / { " '^^^^ ■ ^'''>^^^ ' ^) + T'*'' + k21*51+2 

+fc3S3|ki+k2p-^5ifc?} 

xCk,^k2^k3^k4<^(ki + ka + ka + k4)dkidk2cflc3dk4.       (74) 

However conditions (56), (57) can not be simultaneously satisfied for shallow 
water. Thus shallow water problem remains ill-posed even for optimal variables 
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because of short wavelength instability coming from the fourth order term in the 
Hamiltonian although instability from third-order term is removed by canonical 
transform (40), (41). Actually there is no big surprise in that because we need 
to choose carefully the order of taking the limits kh-i-0 and koh -^ oo, where 
k is the typical wavevector of surface motion and ko is a wavevector of short 
scale perturbation. It means that we need first to solve dynamics of water with 
finite depth ft which is well-posed problem in optimal canonical variables, and 
only after that we should take Umit kh -^ 0. 

9 Conclusion 

In conclusion, we found optimal canonical variables for which the water wave 
problem is well-posed in the approximation which keeps terms up to fourth 
order in the Hamiltonian. The important question remain open if it is possible 
to make water wave equations well-posed by proper choice of canonical transform 
for higher-order corrections (fifth and higher order). We conjecture that such 
optimal canonical variables exist and are imique in all orders of nonlinearity. 
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